
 

Abstract--.  Convergence proper ties of the Maximum
Likelihood Expectation Maximization (MLEM) algor ithm
depending on the activity distr ibution in the field of view is
extended to MLEM/Ordered Subsets EM (OSEM) where
different types of regular ization are applied.
I t will be shown that although different par ts of the image
converge at different rates, pure and post filtered
MLEM/OSEM achieves reasonably uniform resolution.
By contrast, inter  iteration filter ing (IF OSEM) with smoothing
filters, such as Gaussian, renders images with varying spatial
resolution that is dependent on the sur rounding activity.
Fur thermore, a similar  effect is noticed on images reconstructed
with MAP using a Gaussian root pr ior .
We conclude that resolution non-uniformity is entirely due to
the filter ing.

Index Terms—iterative reconstruction, OSEM, convergence,
resolution

I. INTRODUCTION

The major advantage of iterative over analytical algorithms is
the option of emission and detection process to be accurately
modelled [11]. Furthermore, iterative algorithms allow
statistical noise models to be included as well as
incorporation of prior knowledge.   Also, provided that some
kind of regularisation is used, images obtained with iterative
algorithms are more acceptable.
On the other hand, filter-back projection (FBP) as a linear
algorithm produces images which have nearly spatially
invariant, object independent resolution.

Pure MLEM/OSEM produces images which possess
unacceptable noise properties as the iteration number
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increases.  That is why regularisation is needed.   Different
types of regularisation can be used such as early stopping,
based on different criteria [9], inter-iteration filtering (IF)
where filtering is used in between the iterations [6,10], post
filtering where one keeps on iterating up to the convergence
after which post filtering is applied [12] as well as
incorporating penalty term in the objective function leading to
MAP algorithms [1,7,8].
Defining criteria for stopping the iteration before the image
becomes too noisy is very difficult since different parts of the
image converge at different rates leading to non-uniform and
object dependent resolution [1]. To avoid this problem post
filtering can be used after the convergence is achieved, but
this leads to long reconstruction times.
Previously it was shown that standard regularisation penalties
produce non-uniform resolution even for space-invariant
tomographs [2] and a modified penalty was proposed that
improved resolution properties.
This abstract concentrates on the non-uniform convergence
properties and the influence of the activity distribution
present in the image.
Even though some people desire and expect non-uniform
resolution based on the idea that high-counts regions provide
higher resolution as mentioned in [2], there are applications
where uniform resolution or at least object independent
resolution is of crucial importance.  One obvious application
would be to dynamic PET studies where there are different
activity distributions in different frames and hence different
resolution properties. Also, for cross-patient studies or single
patient studies taken over a period of time, the same
resolution properties across the image are desirable [3].
Post and inter–filtering as methods of regularising an image
were compared previously [6] and it was concluded that the
coefficient of variation (CV) and contrast of the inter-filtering
was slightly better.  However, that analysis did not account
for the distribution of the radioactivity in the image itself.
Our experiments show that smoothing filters, such as Metz
and Gaussian, incorporated directly into reconstruction either
as the part of the image updating process (inter-filtering) or
as a prior (MAP with Gaussian root prior) influence the
resolution properties of the object surrounded with a large
activity.  Images obtained in this way have spatially varying
resolution.
Section I reviews the algorithms used and the methods are
presented in Section II. The experimental results are
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presented in Section III. Finally, we conclude with a
discussion.

I.ALGORITHM DESCRIPTION

Images for this study were reconstructed with OSEM through
various schemes.  OSEM requires projections to be organised
into a number of subsets.  The subsets were chosen as shown
in [6]. It is worth mentioning that one pass through all the
subsets is considered one full iteration.  The number of
subsets used was fixed to 10 subsets for all reconstructions.
A uniform image as a starting point was used in all
experiments.  In the case of post-filtering plain OSEM needed
to be run to the convergence after which images were filtered.
The convergence point was determined by the stability of
resolution/coefficient of variation.
Inter-iteration filtering incorporated filtering directly in the
reconstruction process where the filtering process itself was
applied at different intervals i.e. filtered every 5 subsets, every
10 and every 20.
Additionally, maximum a posteriori (MAP) with a Gaussian
root prior was implemented where it was assumed that
images are locally smooth and as such pass unaltered by
Gaussian filter.  Gaussian outputs a “weighted average”  of
each pixel's neighbourhood, with the average weighted more
towards the value of the central pixels and therefore
providing gentler smoothing than the one obtained with
simple averaging.  The prior will only be applied if the pixel
values possess huge variations.  The approach is similar to
median root prior but differs in that instead of smoothness,
privilege is given to those solutions, which are roots of the
median [8].
The reconstructions were implemented using the object-
oriented software library PARAPET [15,16].

II. METHODS

In the experimental study we have used simulated and real
data. The real data were obtained from a HiDAC, 3D small
animal PET scanner, which has about 1mm resolution.
The camera consists of four planar, rectangular detector
banks each consisting of 8 HiDAC modules, rotating
backwards and forwards every 6sec over 180°.
The data acquired in list mode was rebinned into 0.5mm bins
where the axial field of view was set to 100mm and diameter
to 60mm. The maximum acceptance angle was 59.03°
discretized in 15 steps.  We have used 160 views for the
rebinning, resulting in the projection data of size 15 × 160 ×
161.  Data were reconstructed on a grid 161 × 161 × 244
cubic voxels of side 0.5mm.
The simulated data was forward projected and the resulting
sinograms were used for reconstruction purposes. The sizes
and angles were the same as for the experimental data.

The effects of attenuation, scatter or noise were not simulated
so that only resolution effects could be examined.
Furthermore, we have simulated two cylinders and two line
sources placed such that one lied in between the cylinders and
the other one is placed a bit further apart.  The line sources
were longer than the cylinders.
The real data consisted of a 1h scan of a germanium cylinder
(external length 7.2cm and source length 6.2 cm with
external diameter 3.6cm and source diameter 3cm) with a
10cm long aluminum oxide ( Al2O3) filament line source
aligned to it.
These configurations are similar to the 2D case in [1], to
illustrate the effect of convergence of FWHM by surrounding
activity (Fig. 1a).
Resolution was measured by FWHM of the line source where
two values were recorded, one obtained from the part of the
line source surrounded with the activity and the other one
from the opposing end where there was no surrounding
activity present.
A Gaussian smoothing filter with FWHM = 2mm was used in
all experiments.  This filter was incorporated directly into the
reconstruction either after the normal OSEM image update
(inter filtering) or as a prior (MAP with Gaussian root prior)
or applied to the converged images reconstructed with pure
OSEM (post filtering).

III. EXPERIMENTAL RESULTS

The analysis of the inter filtered case showed that the part of
the image sandwiched between the two cylinders failed to
achieve the same resolution as the one obtained in the post
filtered case (Fig.1b and 1c).  This indicates that application
of inter filtering with smoothing filters renders images with
spatially varying resolution.  The more frequent the filter is
applied the bigger the difference in the resolution properties
between the two parts of the line sources (Fig. 2a). As the
frequency of filtering is decreased the effect is less
pronounced and the resolution properties approximate to the
nonregularized case (Fig. 2b).
Furthermore, images reconstructed with MAP with Gaussian
root prior showed that the same effect, i.e. non-uniform
resolution, is present (Fig. 1d)
We conclude that these resolution non–uniformities are due
exclusively to the filtering with smoothing filters (IF OSEM)
or the interaction between likelihood function and the prior
for MAP.  Moreover, resolution properties depend on the
object in the case of inter-iteration filtering whereas this
effect is not present in the case of post-filtering.  .
Similarly, simulations of the line source and the two cylinders
placed this time further apart did not show this effect.  Hence
showing the object dependency once again.
Furthermore, the real data was reconstructed using 3D pure
and post-filtered OSEM, IF OSEM where filtering was
performed as explained in section II. Once again it was



confirmed that smoothing filters incorporated in the
reconstruction produce images with spatially varying
resolution (Fig. 3).

IV. DISCUSSION

We have investigated object dependency and the convergence
rate in the pure and regularized OSEM (post/inter filtering)
as well as MAP with the Gaussian root prior.  It was found
that once a smoothing filter is applied either as a part of
image updating process (IF OSEM) or in MAP the obtained
images have spatially varying resolution depending on the
activity distribution in the image.
Figures 2a, 2b give a clear intuitive explanation for this
behavior in the interfiltering case.  There are two competing
effects on the FWHM. The normal OSEM update decreases
the FWHM, while the filtering step increases it.  At the
convergence, the balance between these two updates is
influenced by two factors: the frequency of filtering (higher
the frequency, higher FWHM) and the convergence rate of
pure OSEM in that point (slower convergence, higher
FWHM).   This latter factor gives an interesting connection
between the object dependency of the local convergence rate
and the resolution obtained in an inter filtering case.  It is
clear that this connection will also exists when filtering
occurs after every subitertaion, which in the case of  1 subset
is the original EMS algorithm.  It is also clear that exactly the
same behavior will happen in any algorithm, i.e. with
different update steps than (OS) EM, that uses interfilterinng.
This is because any algorithm will have different local
convergence rates depending on surrounding activity.  So we
generally conclude: for any iterative algorithm, interfiltering
with spatially invariant smoothing filtering will lead to object
dependent resolution.
This situation is very similar to the case analyzed in [4].
Instead of intefiltering, there, a (smoothing) filtering term is
added to the likelihood.  It was found that having a spatially
invariant penalty term leads to object dependent (and hence
non-uniform) resolution.  In this case, no obvious connection
with the convergence rate is present.  Indeed, the analysis in
[4] is independent of the algorithm used to find the MAP
maximum. In contrast, for interfiltering, the object
dependency will vary if a different algorithm is used, as the
local convergence rate would be different.
It is likely that, similar to the MAP case [3,4,5], uniform
resolution could be obtained in an interfiltering case by
adapting the filter locally.  We plan to investigate this in the
future.  To do this, the fixed-point equations for EMS (and its
variations) will have to be analyzed. This is worthwhile as we
found that when no surrounding activity is present,
interfiltering gives a better resolution vs. noise (measured as
CV in a uniform region) trade-off compared to postfiltering
(data not shown but see also [6]).

At the moment, it is unclear if a filtering approach is better
than using a penalty term. To investigate this, we included
some results on MAP with a Gaussian root prior. Although
this algorithm does not correspond to maximizing an
objective function (there is generally no penalty term
associated with a root prior), we used this algorithm because a
clear connection exists with the filter. We were surprised to
see (Fig. 1d) that the FWHM obtained by this algorithm is a
lot smaller than in the case of postfiltering (and hence
interfiltering). Obviously, this will depend on the choice of
beta, and one would have to look at the corresponding noise
properties. We leave this for future work.

Figure 1a.  Resolution vs. subiteration number (nonregularised OSEM) for two
parts of the line source (part of the line source aligned with a cylinder – triangles,
and part of the line source on its own – squares)

Figure 1b.  Resolution vs. subiteration number (post filtered OSEM) for two
parts of the line source (part of the line source aligned with a cylinder –triangles,
and part of the line source on its own – squares)

Figure 1c Resolution vs. subiteration number (inter filtered OSEM) for two parts
of the line source (part of the line source aligned with a cylinder –triangles, and
part of the line source on its own – squares)
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Figure 1d. Resolution vs. subiteration number (MAP with Gaussian root prior)
for two parts of the line source (part of the line source aligned with a cylinder –
triangles, and part of the line source on its own – squares)

Figure 2a. Resolution vs. subiteration number for inter-filtered OSEM where
filtering was applied twice in every full iteration

Figure 2b. Resolution vs. subiteration number for inter-filtered OSEM where
filtering was applied every four full iteration

Figure 3 Comparison of resolution vs. plane number for real data of inter and
post filtering
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